Accessibility adaptations to assist motorcyclists with lower limbs disability
DOI:
https://doi.org/10.17411/jacces.v9i2.239Abstract
Motorcyclists with lower limbs limitations require customized adaptations to drive motorcycles. Gearshifting and rear brake actuation must be adapated to be performed by the upper limbs of the motorcyclist. Also, motorcyclists with lower limbs disability need assistance from others to be able to get on motorcycle and mantain equilibrium until reaching a minimum necessary speed. Thus, this work presents accessibility adaptations to assist motorcyclists with lower limbs disability, including the development of a structural support modeled on CAD platform and analyzed by the Finite Element Method. Convergence of solutions were carried out to assure results with good reliability. All adaptations proposed in this work were elaborated aiming ease of manufacturing, mounting and installing, as well as, low cost and minimum maintenance. All the work was developed considering the Honda CBR1000RR, nevertheless all ideas and concepts presented in this work can be expanded and adapted to practically all existing motorcycles.References
Agostoni, S.; Cheli, F.; Leo, E. and Pezzola, M. (2012). An innovative multi dof TMD system for motorcycle handlebars designed to reduce structural vibrations and human exposure. Mechanical Systems and Signal Processing, 31, 298-315. DOI: 10.1016/j.ymssp.2011.11.018
Atahan, A.O.; Hiekmann, J.M.; Himpe, J.; Marra, J. (2018). Development of a continuous motorcycle protection barrier system using computer simulation and full-scale crash testing. Accident Analysis and Prevention, 116, 103-115. DOI: 10.1016/j.aap.2017.04.005
Carvalho, H.B.; Andreuccetti, G.; Rezende, M.R.; Bernini, C.; Silva, J.S.; Leyton, V.; D’andréa Greve, J.M. (2016). Alcohol and drug involvement in motorcycle driver injuries in the city of Sao Paulo: analysis of crash culpability and other associated factors. Drug and Alcohol Dependence, 1, 162, 199-205. DOI: 10.1016/j.drugalcdep.2016.03.007
Chen, C.-S.; Liu, T.-C. (2012). Medical cost and motorcycle helmet law in Taiwan. Economics Research International, 2012, 1-9. DOI: 10.1155/2012/920901
Chen, P.-L.; Pai, C.-W.; Jou, R.-C.; Saleh, W.; Kuo, M.-S. (2015). Exploring motorcycle red-light violation in response to pedestrian green signal countdown device. Accident Analysis and Prevention, 75, 128-136. DOI: 10.1016/j.aap.2014.11.016
Erdogan, M.O.; Sogut, O.; Colak, S.; Ayhan, H.; Afacan, M.A.; Satilmis, D. (2013). Roles of motorcycle type and protective clothing in motorcycle crash injuries. Emergency Medicine International, Cengage Learning, Inc. ISSN: 2090-2840
French, M.T.; Gumus, G. (2018). Watch for motorcycles! The effects of texting and handheld bans on motorcyclist fatalities. Social Science & Medicine, 216, 81-87. DOI: 10.1016/j.socscimed.2018.09.032
French, M.T.; Gumus, G.; Homer, J.F. (2009). Public policies and motorcycle safety. Journal of Health Economics, 28(4), 831-838. DOI: 10.1016/j.jhealeco.2009.05.002
Hong, C.-Z. (2012). Motorcycle for persons with disabilities. American Journal of Physical Medicine & Rehabilitation, 91(5), 461-461. DOI: 10.1097/PHM.0b013e31824662e2
Gil, G.; Savino, G.; Piantini, S.; Pierini, M. (2018). Motorcycle that see: multifocal stereo vision sensor for advanced safety systems in tilting vehicles. Sensors, 18(1), 295(1-34). DOI: 10.3390/s18010295
Jolly, K.; Krzywinski, S.; Rao, P.V.M.; Gupta, D. (2019). Kinematic modeling of a motorcycle rider for design of functional clothing. International Journal of Clothing Science and Technology, 31(6), 856-873. DOI: 10.1108/IJCST-02-2019-0020
Kostopoulos, V.; Markopoulos, Y.P.; Giannopoulos, G.; Vlachos, D.E. (2001). Finite element analysis of impact damage response of composite motorcycle safety helmets. Composites Part B, 33(2), 99-107. DOI: 10.1016/S1359-8368(01)00066-X
Leme, A.D.S.; Creci, G.; Jesus, E.R.B.; Rodrigues, T.C.; Menezes, J.C. (2019). Finite element analysis to verify the structural integrity of an aeronautical gas turbine disc made from inconel 713LC superalloy. Trans Tech Publications, Switzerland, Advanced Engineering Forum, 32, 15-26. DOI: 10.4028/www.scientific.net/AEF.32.15
Murakami, S.; Nishimura, H.; Zhu, S. (2012). Front-steering assist control system design for a motorcycle stabilization during braking, Journal of System Design and Dynamics, 16, 6(4), 431-446. DOI: 10.1299/jsdd.6.431
Seedam, A.; Satiennam, T.; Radpukdee, T.; Satiennam, W.; Ratanavaraha, V. (2017). Motorcycle on-Road driving parameters influencing fuel consumption and emissions on congested signalized urban corridor. Journal of Advanced Transportation, Hindawi Limited, 2017, 6 pages. DOI: 10.1155/2017/5859789
Sheng, N.; Xu, Z.; Li, M. (2015). The performance of CRTN model in a motorcycle city. Mathematical Problems in Engineering, 2015, 7 pages. DOI: 10.1155/2015/369620
Silva, D.W.; Andrade, S.M.; Soares, D.F.P.P.; Mathias, T.A.F.; Matsuo, T.; Souza, R.K.T. (2011). Factors associated with road accidents among Brazilian motorcycle couriers. The Scientific World Journal, 2012. DOI: 10.1100/2012/605480
Singhania, S.; Kageyama, I.; Karanam, V. (2019). Study on low-speed stability of a motorcycle. Applied Sciences, 9(11):2278. DOI: 10.3390/app9112278
Teoh, E.R.; Campbell, M. (2010). Role of motorcycle type in fatal motorcycle crashes. Journal of Safety Research, 41(6), 507-512. DOI: 10.1016/j.jsr.2010.10.005
Toma, M.; Njilie, F.E.A.; Ghajari, M.; Galvanetto, U. (2010). Assessing motorcycle crash-related head injuries using finite element simulations. International Journal of Simulation Modelling, 9(3), 143-151. DOI: 10.2507/IJSIMM09(3)3.164
Tong, C.-C.; Jwo, W.-S. (2007). An assist-mode hybrid electric motorcycle. Journal of Power Sources, 174(1), 61-68. DOI: 10.1016/j.jpowsour.2007.08.095
Truong, L.T.; Nguyen, H.T.T.; De Gruyter, C. (2018). Correlations between mobile phone use and other risky behaviours while riding a motorcycle Accident Analysis and Prevention, 118, 125-130. DOI: doi.org/10.1016/j.aap.2018.06.015
Uberti, S.; Copeta, A.; Baronio, G.; Motyl, B. (2018). An eco-innovation and technical contaminated approach for designing a low environmental impact off-road motorcycle. International Journal on Interactive Design and Manufacturing (IJIDeM), 12(1), 281-295. DOI: 10.1007/s12008-017-0382-3
Vasconcellos, E.A. (2012). Road safety impacts of the motorcycle in Brazil. International Journal of Injury Control and Safety Promotion, 1-8. DOI: 10.1080/17457300.2012.696663
Xiao, Y.; Huang, H.; Peng, Y.; Wang, X. (2018). A study on motorcyclists head injuries in car-motorcycle accidents based on real-world data and accident reconstruction. Journal of Mechanics in Medicine and Biology, 18(4):1850036. DOI: 10.1142/S0219519418500367
Zienkiewicz, O.C. (1997). The finite element method. McGraw-Hill, 3 ed. University of Michigan, p. 787. ISBN: 0070840725.

Downloads
Published
How to Cite
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share or adapt the work with an acknowledgment of the work's authorship and initial publication in this journal. Use of the work for commercial purposes are not allowed.
- Authors are able to publish the journal's published version of the work in other media (e.g., post it to an institutional repository or publish it in a book), as far as they inform the Journal of Accessibility and Design for All of that fact. When publishing their work in other sources, authors must mention the name of the Journal of Accessibility and Design for All, its ISSN, the number and issue in which the article was published and a link to the main page of the Journal of Accessibility and Design for All. Optionally, they can also include a link to the article published in the Journal of Accessibility and Design for All.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as it can lead to productive exchanges, as well as earlier and greater citation of published work.